如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P以速度v垂直磁场射入大量的带正电的粒子,且粒子所带电荷量为q、质量为m。不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是( )
A.只要对着圆心入射,出射后均可垂直打在MN上 |
B.即使是对着圆心入射的粒子,其出射方向的反向延长线也不一定过圆心 |
C.只要速度满足,沿不同方向入射的粒子出射后均可垂直打在MN上 |
D.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 |
电子自静止开始经M、N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d有平行边界的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电荷量为e)、
1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能Ekm.
如图所示,在垂直纸面向里的匀强磁场边界,有两个质量、电荷量均相等的正、负离子(不计重力),从O点以相同的速度射入磁场中,射入方向均与边界成θ角,则正、负离子在磁场运动过程中,下列判断错误的是( )
A.运动的轨道半径相同 |
B.重新回到磁场边界时速度的大小和方向都相同 |
C.运动的时间相同 |
D.重新回到磁场边界的位置与O点距离相等 |
图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面向里,图中右边有一半径为R、圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出.已知弧所对应的圆心角为θ.不计重力.求
(1)离子速度的大小;
(2)离子的质量.
如图所示,半径为r的半圆形区域内分布着垂直纸面向里的匀强磁场,磁感应强度为B.半圆的左边分别有两平行金属网M和金属板 N,M、 N两板所接电压为U,板间距离为d.现有一群质量为m、电荷量为q的带电粒子(不计重力)由静止开始从金属板 N上各处开始加速,最后均穿过磁场右边线PQ.求这些粒子到达磁场右边线PQ的最长时间和最短时间差.
电子自静止开始经M、 N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求:
(1)正确画出电子由静止开始直至离开匀强磁场时的轨迹图;(用尺和圆规规范作图)
(2)匀强磁场的磁感应强度B.(已知电子的质量为m,电荷量为e)
如图所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里.P为屏上的一小孔,PC与MN垂直.一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B垂直的平面内,且散开在与PC夹角为θ的范围内.则在屏MN上被粒子打中的区域的长度为( )
A. | B. |
C. | D. |
如图是某离子速度选择器的示意图,在一半径为R="10" cm的圆柱形桶内有B=10-4 T的匀强磁场,方向平行于轴线,在圆柱桶某一直径的两端开有小孔,作为入射孔和出射孔.离子束以不同角度入射,最后有不同速度的离子束射出.现有一离子源发射比荷为γ=2×1011 C/ kg的阳离子,粒子束中速度分布连续.当角θ=45°时,出射离子速度v的大小是 ( )
A.×106 m/s | B.2×106 m/s |
C.2×108 m/s | D.4×106 m/s |
如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B、水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°.利用以上数据可求出下列物理量中的哪几个( )
A.带电粒子的比荷 |
B.带电粒子在磁场中运动的周期 |
C.带电粒子的初速度 |
D.带电粒子在磁场中运动的半径 |
如图所示,MN表示真空室中垂直于纸面放置的感光板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B. 一个电荷量为q的带电粒子从感光板上的狭缝O处以垂直于感光板的初速度v射入磁场区域,最后到达感光板上的P点. 经测量P、O间的距离为l,不计带电粒子受到的重力。求:
①带电粒子所受洛伦兹力的大小;
②此粒子的质量大小。
一质量为m、带电量为+q的粒子以速度v0从O点沿y轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强大小为E,方向沿x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方c点,如图所示,已知 b到O的距离为L,粒子的重力不计,试求:
⑴画出粒子运动的轨迹,并求出磁感应强度B;
⑵求出圆形匀强磁场区域的最小半径和最小面积;
⑶求出b点到c点的距离
(14分)一质量为m、电荷量为q的带负电的带电粒子,从A点射入宽度为d、磁感应强度为B的匀强磁场,MN、PQ为该磁场的边界线,磁感线垂直于纸面向里,磁场区域足够长.如图16所示.带电粒子射入时的初速度与PQ成45°角,且粒子恰好没有从MN射出.(不计粒子所受重力)求:
(1)该带电粒子的初速度v0;
(2)该带电粒子从PQ边界射出的射出点到A点的距离x.
一电子以与磁场垂直的速度v从P处沿PQ方向进入长为d、宽为h的匀强磁场区域,从N点射出,如图12所示,若电子质量为m,电荷量为e,磁感应强度为B,则 ( )
A.h=d |
B.电子在磁场中运动的时间为 |
C.电子在磁场中运动的时间为 |
D.洛伦兹力对电子不做功 |
如图11所示,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L).一质量为m、电荷量为e的电子从a点以初速度v0平行于x轴正方向射入磁场,并从x轴上的b点射出磁场,此时速度方向与x轴正方向的夹角为60°.下列说法中正确的是 ( )
A.电子在磁场中运动的时间为 |
B.电子在磁场中运动的时间为 |
C.磁场区域的圆心坐标(,) |
D.电子在磁场中做圆周运动的圆心坐标为(0,-2L) |