如图,莲花山是大连著名的景点之一.游客可以从山底乘坐索道车到达山顶,索道车运行的速度是 1 米/秒.小明要测量莲花山山顶白塔的高度,他在索道 A 处测得白塔底部 B 的仰角约为 30 ° ,测得白塔顶部 C 的仰角约为 37 ° ,索道车从 A 处运行到 B 处所用时间约为 5 分钟.
(1)索道车从 A 处运行到 B 处的距离约为_____米;
(2)请你利用小明测量的数据,求白塔BC的高度.(结果取整数)
(参考数据: sin 37 ° ≈ 0 . 60 , cos 37 ° ≈ 0 . 80 , tan 37 ° ≈ 0 . 75 , 3 ≈ 1 . 73 )
因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式予以支援.下图是两水库的蓄水量y(万米3)与时间x(天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题: (1)甲水库每天的放水量是多少万立方米? (2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? (3)求直线AD的函数解析式.
推理证明:如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°. (1)求证:DE是⊙O的切线; (2)分别求AB,OE的长; (3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为.
如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B. (1)求k的值; (2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.
小明和小颖做掷骰子的游戏,规则如下: 游戏前,每人选一个数字; 每次同时掷两枚均匀骰子; ③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜. (1)用列表法或树状图列出同时掷两枚均匀骰子所有可能出现的结果; (2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。 (1)求该学校为新增电脑投资的年平均增长率; (2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?