如图,乙地是甲、丙两地的中点, A 从甲地, B 从丙地, C , D 从乙地分别沿图示的方向同时出发.若 A 出发后 70 min 时遇到 C , 84 min 时遇到 B , 140 min 时追上 D .求 B 出发后多久遇到 D ?多久追上 C ?
方方驾驶小汽车匀速地从地行驶到地,行驶里程为480千米,设小汽车的行驶时间为(单位:小时),行驶速度为(单位:千米小时),且全程速度限定为不超过120千米小时.
(1)求关于的函数表达式;
(2)方方上午8点驾驶小汽车从地出发.
①方方需在当天12点48分至14点(含12点48分和14点)间到达地,求小汽车行驶速度的范围.
②方方能否在当天11点30分前到达地?说明理由.
如图,在中,.
(1)已知线段的垂直平分线与边交于点,连接,求证:.
(2)以点为圆心,线段的长为半径画弧,与边交于点,连接.若,求的度数.
称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).
实际称量读数和记录数据统计表
序号
数据
1
2
3
4
5
甲组
48
52
47
49
54
乙组
(1)补充完成乙组数据的折线统计图.
(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.
②甲,乙两组数据的方差分别为,,比较与的大小,并说明理由.
在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),与轴交于点,顶点为,对称轴与轴交于点.
(1)如图1,连接,.若点为直线上方抛物线上一动点,过点作轴交于点,作于点,过点作交轴于点.点,分别在对称轴和轴上运动,连接,.当的周长最大时,求的最小值及点的坐标.
(2)如图2,将抛物线沿射线方向平移,当抛物线经过原点时停止平移,此时抛物线顶点记为,为直线上一点,连接点,,,△能否构成等腰三角形?若能,直接写出满足条件的点的坐标;若不能,请说明理由.
在中,平分交于点.
(1)如图1,若,,求的面积;
(2)如图2,过点作,交的延长线于点,分别交,于点,,且.求证:.