如果将点 P 绕定点 M 旋转 180 ∘ 后与点 Q 重合,那么称点 P 与点 Q 关于点 M 对称,定点 M 叫对称中心,此时,点 M 是线段 PQ 的中点,如图,在直角坐标系中, △ ABO 的顶点 A , B , O 的坐标分别为 1 , 0 , 0 , 1 , 0 , 0 ,点列 P 1 , P 2 , P 3 , ⋯ 中的相邻两点都关于 △ ABO 的一个顶点对称,点 P 1 与点 P 2 关于点 A 对称,点 P 2 与点 P 3 关于点 B 对称,点 P 3 与点 P 4 关于点 O 对称,点 P 4 与点 P 5 关于点 A 对称,点 P 5 与点 P 6 关于点 B 对称,点 P 6 与点 P 7 关于点 O 对称,…,对称中心分别是 A , B , O , A , B , O , ⋯ ,且这些对称中心依次循环,已知 P 1 的坐标为 1 , 1 ,试写出 P 2 , P 7 , P 100 , P 2021 的坐标.
如图所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上:先让原点与圆周上数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1、…所对应的点重合。这样,正半轴上的整数就与圆周上的数字建立了一种对应关系。(1)圆周上的数字a与数轴上的数5对应,则a=_____________;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是____________(用含n的代数式表示)。
.如图,在直角坐标系xOy中,直线y=kx+b交x轴负半轴于A(-1,0),交y轴正半轴于B,C是x轴负半轴上一点,且CO =4AO,△ABC的面积为6. (1)点C的坐标是;点B的坐标是 (2)求直线AB的解析式 (3)点D是第二象限内一动点,且OD⊥BD,直线BM垂直射线CD于E,OF⊥OD交直线BM于F ,当线段OD、BD的长度发生改变时,∠BDF的大小是否发生改变?若改变,请说明理由;若不变,请证明并求出其值.
.直线:与经过点(3,-5)的直线关于轴对称,求直线的解析式。
如图,E是正方形ABCD的边DC上的一点,过点A作FA⊥AE交CB的延长线于点F,求证:DE=BF
.如图,利用关于坐标轴对称的点的坐标特点,分别作出△ABC关于x轴和y轴对称的图形。