几何模型:
条件:如图①, A , B . 是直线 l 同旁的两个定点
问题:在直线 l 上确定一点 P ,使 PA + PB 的值最小.
方法:作点 A 关于直线 l 的对称点 A ' ,连接 A ' B 交 l 于点 P ,则 PA + PB = A ' B 的值最小(不必证明).
模型应用:
(1)如图②,正方形 ABCD 的边长为 2 , E 为 AB 的中点, P 是 AC 上一动点.连接 BD ,由正方形对称性可知, B 与 D 关于直线 AC 对称.连接 ED 交于 AC 于 P ,则 PB + PE 的最小值是_____;
(2)如图③, ∠ AOB = 45 ° , P 是 ∠ AOB 内一点, PO = 10 , Q , R 分别是 OA , OB 上的动点,求 △ PQR 周长的最小值.
用适当的方法解下列方程(每小题6分共12分)(1) (2)
计算下列各题(每小题6分,共12分)⑴ 化简:(2)如图,化简
有5个数,每两个数的和分别为2,3,4,5,6,7,8,6,5,4(未按顺序排列)求5个数中最大数的值.
已知m是整数且-60<m<-30,关于x,y的二元一次方程组有整数解,求x2+y的值.
解不等式组