如图, OP = 1 ,过点 P 作 P P 1 ⊥ OP 且 P P 1 = 1 ,得 O P 1 = 2 ;再过点 P 1 作 P 1 P 2 ⊥ O P 1 且 P 1 P 2 = 1 ,得 O P 2 = 3 ;又过 P 2 作 P 2 P 3 ⊥ O P 2 且 P 2 P 3 = 1 ,得 O P 3 = 2 ; ⋯ ,依此法继续下去,得 O P 2021 = _____.
方程 的解是 .
一座拱型桥,桥下水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF是多少?若把它看作是抛物线的一部分,在坐标系中(如图1)可设抛物线的表达式为.请你填空:a=,c=,EF=米.若把它看作是圆的一部分,则可构造图形(如图2)计算如下: 设圆的半径是r米,在Rt△OCB中,易知,r=14.5 同理,当水面上升3米至EF,在Rt△OGF中可计算出GF=米,即水面宽度EF=米.
如图,△ABC, △DCE,△CEF都是正三角形, 且B,C,E,F在同一直线上,A,D,G也在同一直线上,设△ABC, △DCE,△CEF的面积分别为.当时,_____________
在△ABC中,E是AB上一点,AE=2,BE=3,AC=4,在AC上取一点D,使以A、D、E为顶点的三角形与△ABC相似,则AD的 值是.
工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径是mm