图1是一种手机托架,使用该手机托架示意图如图3所示,底部放置手机处宽 AB = 1 . 2 cm ,托架斜面长 BD = 6 cm ,它有 C 到 F 共4个挡位调节角度,相邻两个挡位间的距离为 0 . 8 cm ,挡位 C 到 B 的距离为 2 . 4 cm .将某型号手机置于托架上(图2,手机屏幕长 AG 是 15 cm , O 是支点且 OB = OE = 2 . 5 cm (支架的厚度忽略不计).求:
(1)当支架调到 E 挡时,点 G 离水平面的距离 GH 为多少厘米;
(2)当支架从 E 挡调到 F 挡时,点 D 离水平面的距离下降了多少厘米.
(1)(-)-1+()2013×(-)2014 (2)[(x+2y)2-(x+2y)(x-3y)]÷(5y)
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小.而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号来确定它们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N.若M-N<0,则M<N, 请你用“作差法”解决以下问题: (1)如图,试比较图①、图②两个矩形的周长C1、C2的大小(b>c). (2)如图③,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形的面积之和S1与两个矩形面积之和S2的大小.
已知三元一次方程组 (1)求该方程组的解; (2)若该方程组的解使ax+2y+z<0成立,求整数a的最大值.
如图,∠A=∠C=54°,点B在AC上,且AB=EC,AD=BC,BF⊥DE于点F. (1)证明:BD=BE; (2)求∠DBF的度数.
解不等式(或不等式组): (1)解不等式(2)解不等式组