在一个不透明的布袋里装有 4 个标有 1 , 2 , 3 , 4 的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为 x ,小红在剩下的 3 个小球中随机取出一个小球,记下数字为 y ,这样确定了点 Q 的坐标 x , y .
(1)画树状图或列表,写出点 Q 所有可能的坐标;
(2)求点 Q x , y 在函数 y = - x + 5 的图象上的概率;
(3)小明和小红约定做一个游戏,其规则为:若 x , y 满足 xy > 6 则小明胜;若 x , y 满足 xy < 6 则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.
已知二次函数 y = x 2 + x 的图象,如图所示
(1)根据方程的根与函数图象之间的关系,将方程 x 2 + x = 1 的根在图上近似地表示出来(描点),并观察图象,写出方程 x 2 + x = 1 的根(精确到 0 . 1 ) .
(2)在同一直角坐标系中画出一次函数 y = 1 2 x + 3 2 的图象,观察图象写出自变量 x 取值在什么范围时,一次函数的值小于二次函数的值.
(3)如图,点 P 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在 P 点上,写出平移后二次函数图象的函数表达式,并判断点 P 是否在函数 y = 1 2 x + 3 2 的图象上,请说明理由.
如图, AB 为 ⊙ O 的直径,弦 CD ⊥ AB ,垂足为点 P ,直线 BF 与 AD 的延长线交于点 F ,且 ∠ AFB = ∠ ABC .
(1)求证:直线 BF 是 ⊙ O 的切线.
(2)若 CD = 2 3 , OP = 1 ,求线段 BF 的长.
为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:
(1)求扇形统计图中 m 的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?
光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.
(1)求这个月晴天的天数.
(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).
如图,已知 BD 是矩形 ABCD 的对角线.
(1)用直尺和圆规作线段 BD 的垂直平分线,分别交 AD 、 BC 于 E 、 F (保留作图痕迹,不写作法和证明).
(2)连接 BE , DF ,问四边形 BEDF 是什么四边形?请说明理由.