在一个不透明的布袋里装有 4 个标有 1 , 2 , 3 , 4 的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为 x ,小红在剩下的 3 个小球中随机取出一个小球,记下数字为 y ,这样确定了点 Q 的坐标 x , y .
(1)画树状图或列表,写出点 Q 所有可能的坐标;
(2)求点 Q x , y 在函数 y = - x + 5 的图象上的概率;
(3)小明和小红约定做一个游戏,其规则为:若 x , y 满足 xy > 6 则小明胜;若 x , y 满足 xy < 6 则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.
(年新疆乌鲁木齐市)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E. (1)求证:DC=DE; (2)若tan∠CAB=,AB=3,求BD的长.
(年贵州省遵义市)如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE. (1)求证:D是BC的中点; (2)若DE=3,BD—AD=2,求⊙O的半径; (3)在(2)的条件下,求弦AE的长.
(年江西省南昌市)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法). (1)如图1,AC=BC; (2)如图2,直线l与⊙O相切于点P,且l∥BC.
(年贵州省黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=. (1)求⊙O的半径OD; (2)求证:AE是⊙O的切线; (3)求图中两部分阴影面积的和.
(年贵州省铜仁市)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E. (1)求证:CB平分∠ACE; (2)若BE=3,CE=4,求⊙O的半径.