如图所示,在 ABC 中, AC = BC , ∠ ACB = 90 ∘ , D , E 是边 AB 上的两点, AD = 3 , BE = 4 , ∠ DCE = 45 ∘ .则 △ ABC 的面积是多少?
如图,已知,于D,为上一点,于F,交CA于G.求证:.
如图所示,BE平分∠ABD,DE平分∠CDB, BE和DE相交于AC上一点E,如果∠BED=90°,试说明AB∥CD.
如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
如图,与是邻补角,OD、OE分别是与的平分线,试判断OD与OE的位置关系,并说明理由.
解方程组