欧几里德的《原本》记载,形如 x 2 + ax = b 2 的方程的图解法是:画 R t Δ A B C ,使 ∠ ACB = 90 ° , BC = a 2 , AC = b ,再在斜边 AB 上截取 BD = a 2 .则该方程的一个正根是( ).
AC 的长
AD 的长
BC 的长
CD 的长
如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为
如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是
用图象法解某二元一次方程组时,如图所示在同一直角坐标系中作出相应的两个一次函数的图象,则所解的二元一次方程组是
已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线上,设点M的坐标为(a,b),则二次函数
如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为