如图,在菱形 A B C D 中, ∠ B A D = 120 ° , A B = 6 ,连接 B D .
(1)求 B D 的长;
(2)点E为线段 B D 上一动点(不与点B,D重合),点 F 在边 A D 上,且 B E = 3 D F .
①当 C E ⊥ A B 时,求四边形 A B E F 的面积;
②当四边形 A B E F 的面积取得最小值时, C E + 3 C F 的值是否也最小?如果是,求 C E + 3 C F 的最小值;如果不是,请说明理由.
解下列方程: (1)x2-4x-3=0 (2)(x-2)2=3(x-2) (3)
如图,在直角坐标平面内,直线y=-x+5与x轴和y轴分别交于A、B两点,二次函数y=+bx+c的图象经过点A、B,且顶点为C. (1)求这个二次函数的解析式; (2)求sin∠OCA的值; (3)若P是这个二次函数图象上位于x轴下方的一点,且△ABP的面积为10,求点P的坐标.
如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E. (1)求证:直线BD与⊙O相切; (2)若AD:AE=4:5,BC=6,求⊙O的直径.
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,若∠PAB=40°,求∠P的度数.
居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:
并将调查结果绘制了图1和图2两幅不完整的统计图. 请你根据图中提供的信息解答下列问题: (1)求本次被抽查的居民有多少人? (2)将图1和图2补充完整; (3)求图2中“C”层次所在扇形的圆心角的度数; (4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.