记 S n为等比数列{ a n}的前 n项和.已知 S 2=2, S 3=﹣6.
(1)求{ a n}的通项公式;
(2)求 S n,并判断 S n +1, S n, S n +2是否成等差数列.
在中为内角的对边,且. (1)求的大小; (2)若,试判断的形状.
己知函数. (Ⅰ)求的单调区间; (Ⅱ)若时,恒成立,求的取值范围; (Ⅲ)设函数,若的图象与的图象在区间上有两个交点,求的取值范围.
设函数 (Ⅰ)当,求函数的单调区间与极值; (Ⅱ)若函数在上是增函数,求实数的取值范围.
已知函数,其导函数的图象过原点. (Ⅰ)当时,求函数的图象在处的切线方程; (Ⅱ)若存在,使得,求的最大值;
如图,在平面直角坐标系中,点A在轴的正半轴上,直线AB的倾斜角为,设. (Ⅰ)用表示点的坐标及||; (Ⅱ)若的值.