如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱 A A 1 的长为5.
(1)求三棱柱ABC﹣A 1B 1C 1的体积;
(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.
设p:实数x满足,其中,实数满足 (Ⅰ)若且为真,求实数的取值范围; (Ⅱ)若p是q的必要不充分条件,求实数的取值范围
己知△ABC中,AB="AC" , D是△ABC外接圆劣弧上的点(不与点A , C重合),延长BD至E。 (1)求证:AD 的延长线平分; (2)若,△ABC中BC边上的高为, 求△ABC外接圆的面积.
如图所示,圆的直径,为圆周上一点,.过作圆的切线,过作的垂线,分别与直线、圆交于点,求的度数和线段的长。
已知,. (I)若,求; (II)若R,求实数的取值范围
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是. (Ⅰ)求小球落入A袋中的概率P(A); (Ⅱ)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.