已知曲线 C : y = x 2 与直线 l : x - y + 2 = 0 交于两点 A ( x A , y A ) 和 B ( x B , y B ) ,且 x A < x B .记曲线 C 在点 A 和点 B 之间那一段 L 与线段 AB 所围成的平面区域(含边界)为 D .设点 P ( s , t ) 是 L 上的任一点,且点 P 与点 A 和点 B 均不重合.
(1)若点 Q 是线段 AB 的中点,试求线段 PQ 的中点 M 的轨迹方程;
(2)若曲线 G : x 2 - 2 ax + y 2 - 4 y + a 2 + 51 25 = 0 与点 D 有公共点,试求 a 的最小值.
已知几何体的三视图如下,试求它的表面积和体积。单位:cm
图(1)
已知,且,求的最小值及取得最小值时的值
在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,分别为曲线与轴,轴的交点. (1)写出曲线的直角坐标方程,并求出的极坐标; (2)设的中点为,求直线的极坐标方程.
选做题.(本小题满分10分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.) .在中,已知是的角平分线,的外接圆交于点,.求证:.
.已知函数. (1)若存在单调增区间,求的取值范围; (2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,求出的取值范围?若不存在,请说明理由。