已知曲线 C : y = x 2 与直线 l : x - y + 2 = 0 交于两点 A ( x A , y A ) 和 B ( x B , y B ) ,且 x A < x B .记曲线 C 在点 A 和点 B 之间那一段 L 与线段 AB 所围成的平面区域(含边界)为 D .设点 P ( s , t ) 是 L 上的任一点,且点 P 与点 A 和点 B 均不重合.
(1)若点 Q 是线段 AB 的中点,试求线段 PQ 的中点 M 的轨迹方程;
(2)若曲线 G : x 2 - 2 ax + y 2 - 4 y + a 2 + 51 25 = 0 与点 D 有公共点,试求 a 的最小值.
(本小题满分14分)直棱柱中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,. (1)求证:AC⊥平面BB1C1C; (2)在A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.
已知(1+x)2n=a0+a1x+a2x2+ +a2nx2n. (1)求a1+a2+a3+ +a2n的值; (2)求的值.
如图所示的几何体中,平面,∥,,,是的中点. (1)求证:; (2)求二面角的余弦值.
选修4—5:不等式选讲 解不等式:
选修4—4:坐标系与参数方程 已知曲线C:3x2+4y2-6=0(y≥0). (Ⅰ)写出曲线C的参数方程; (Ⅱ)若动点P(x,y)在曲线C上,求z=x+2y的最大值与最小值.