数列 a n 满足 a 1 = 1 , a 2 = 2 , a n + 2 = 1 + cos 2 nπ 2 a n + sin 2 nπ 2 , n = 1 , 2 , 3 , … … .
(Ⅰ) 求 a 3 , a 4 , 并求数列 a n 的通项公式;
(II) 设 b n = a 2 n - 1 a 2 n , S n = b 1 + b 2 + … … + b n . 证明: 当 n ≥ 6 时 , S n - 2 < 1 n .
如图,设 P 是圆珠笔 x 2 + y 2 = 25 上的动点,点 D 是 P 在 x 轴上的投影, M 为 P D 上一点,且 M D = 4 5 P D (Ⅰ)当 P 的在圆上运动时,求点 M 的轨迹 C 的方程; (Ⅱ)求过点 ( 3 , 0 ) 且斜率为 4 5 的直线被 C 所截线段的长度.
叙述并证明余弦定理
(本小题满分14分)数列定义如下:,,. (1)求的值; (2)求的通项; (3)若数列定义为:, ①证明:;②证明:.
(本小题满分14分)已知函数. (1)求的导数; (2)求证:不等式上恒成立; (3)求的最大值.
(本小题满分13分)已知抛物线C:与直线l:没有公共点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点. (1)证明:直线AB恒过定点Q; (2)若点P与(1)中的定点Q的连线交抛物线C于M,N两点,证明:.