已知 { a n } 是各项均为正数的等比数列, a 1 = 2 , a 3 = 2 a 2 + 16 .
(1)求 { a n } 的通项公式;
(2)设,求数列 { b n } 的前n项和.
(本小题共13分) 已知正方形ABCD的边长为1,.将正方形ABCD沿对角线折起,使,得到三棱锥A—BCD,如图所示. (I)若点M是棱AB的中点,求证:OM∥平面ACD; (II)求证:; (III)求二面角的余弦值.
(本小题共13分) 在中,角A、B、C的对边分别为、、,角A、B、C成等差数列,,边的长为. (I)求边的长; (II)求的面积.
已知定义在实数集上的函数,,其导函数记为,且满足:,为常数. (Ⅰ)试求的值; (Ⅱ)设函数与的乘积为函数,求的极大值与极小值; (Ⅲ)试讨论关于的方程在区间上的实数根的个数.
设MN是双曲线的弦,且MN与轴垂直,、是双曲线的左、右顶点. (Ⅰ)求直线和的交点的轨迹C的方程; (Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足( 为坐标原点,,) 求证:为定值,并求出这个定值.
如图,在矩形中,是的中点,以为折痕将向上折起,使为,且平面平面. (Ⅰ)求证:; (Ⅱ)求直线与平面所成角的正弦值.