已知抛物线C:y2=3x的焦点为F,斜率为 3 2 的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若 AP ⃑ = 3 PB ⃑ ,求|AB|.
甲盒中有红、黑、白三种颜色的球各3个;乙盒中有黄、黑、白三种颜色的球各2个.从两个盒子中各取1个球. (1)求取出的两个球是不同颜色的概率; (2)请设计一种随机摸拟方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).
将长为L的木棒随机的折成3段,求3段构成三角形的概率.
在中,已知顶点A(-4,2),的内角平分线所在直线方程为2x-y=0,过点C的中线所在直线方程为x+2y-5=0,求顶点B的坐标和直线BC的方程.
已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A、B两点,且这两点平分圆N的圆周 ,求圆M的半径最小时的圆M的方程.
已知定点A(0,1),B(0,-1),C(1,0).动点P满足:. (1)求动点P的轨迹方程,并说明方程表示的曲线; (2)当的最大值和最小值.