已知椭圆 C : x 2 25 + y 2 m 2 = 1 ( 0 < m < 5 ) 的离心率为 15 4 , A , B 分别为 C 的左、右顶点.
(1)求 C 的方程;
(2)若点 P 在 C 上,点 Q 在直线 x = 6 上,且 | BP | = | BQ | , BP ⊥ BQ ,求 △ APQ 的面积.
已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人. (1)求此人患色盲的概率; (2)如果此人是色盲,求此人是男人的概率.
袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n的球n个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.
人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元。经统计此年龄段一年内意外死亡的概率是p1,非意外死亡的概率为p2,则a需满足什么条件,保险公司才可能盈利.
一台设备由三大部件组成,在设备运转中,各部件需要调整的概率相应为0.10,0.20和0.30.假设各部件的状态相互独立,以ξ表示同时需要调整的部件数,试求ξ的数学期望Eξ和方差Dξ.
某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出两件,写出次品数的概率分布列.