如图,在长方体 ABCD - A 1 B 1 C 1 D 1 中,点 E , F 分别在棱 D D 1 , B B 1 上,且 2 DE = E D 1 , BF = 2 F B 1 .
(1)证明:点 C 1 在平面 AEF 内;
(2)若 AB = 2 , AD = 1 , ,求二面角 A - EF - A 1 的正弦值.
为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图: 规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品. (1)试用上述样本数据估计甲、乙两厂生产的优等品率; (2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望; (3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
在中,角的对边分别为向量,,且. (1)求的值; (2)若,,求角的大小及向量在方向上的投影.
已知函数(). (1)当时,求函数的单调区间; (2)当时,取得极值,求函数在上的最小值;
已知抛物线的顶点在坐标原点,焦点在轴上,且过点. (1)求抛物线的标准方程; (2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
已知函数 (1)若求在处的切线方程; (2)若在区间上恰有两个零点,求的取值范围.