设数列{an}满足a1=3, a n + 1 = 3 a n - 4 n .
(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
、从某高校新生中随机抽取100名学生,测得身高情况(单位:)并根据身高评定其发育标准如右表所示: (1)请在频率分布表中的①、②位置上填上相应的数据,估计该批新生中发育正常或较好的概率; (2)按身高分层抽样,现已抽取20人准备参加世博会志愿者活动,其中有3名学生担任迎宾工作,记“这3名学生中身高低于170的人数”为,求的分布列及期望.
、已知关于x的一元二次函数,设集合={1,2,3},={-1,1,2,3,4,},分别从集合和中随机取一个数作为和. (1)求函数有零点的概率; (2)求函数在区间[1,+∞)上是增函数的概率.
、已知且,则,得的一个周期为2,类比上述结论,请写出下列两个函数的一个周期. (1)已知为正的常数,且,求的一个周期; (2)已知为正的常数,且,求的一个周期.
本小题共13分) 对数列,规定为数列的一阶差分数列,其中N*).对正整数k,规定为的k阶差分数列,其中. (Ⅰ)若数列的首项,且满足,求数列的通项公式; (Ⅱ)对(Ⅰ)中的数列,若数列是等差数列,使得对一切正整数N*都成立,求; (Ⅲ)在(Ⅱ)的条件下,令设若成立,求最小正整数的值.
本小题共14分) 已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点. (Ⅰ)求椭圆的方程; (Ⅱ)证明以线段为直径的圆经过焦点.