甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为 1 2 ,
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
设函数,(1)当时,求函数的单调递减区间;(2)若函数有相同的极大值,且函数在区间上的最大值为,求实数的值.(其中e是自然对数的底数).
已知正数满足,(1) 求证:; (2) 求的最小值.
已知直线经过点,倾斜角,(1)写出直线的参数方程;(2)设与圆相交于A、B两点,求点P到A、B两点的距离之积.
把边长为6的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为,容积为。(1)写出函数的解析式,并求出函数的定义域;(2)求当为多少时,容器的容积最大?并求出最大容积.
已知实数满足,求证中至少有一个是负数.