分解因式: x 2 + 2 x + 1 = .
使有意义的的取值范围是 .
勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了一枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中, 已知∠ACB=90°,∠BAC=30°,AB=4,作△PQR使得∠R=90°,点H在边QR上,点D、E在边PR上,点G、F在边PQ上,那么△PQR的周长等于___________.
已知等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以每秒0.25cm的速度运动, 当点P运动到PA与腰垂直的位置时,点P运动的时间应为__ _____秒.
如图,正方形ABCD在平面直角坐标系中的位置如图所示,点B与原点重合,点D坐标为(4,4),当三角板直角顶点P坐标为(3,3)时,设一直角边与x轴交于点E,另一直角边与y轴交于点F.在三角板绕点P旋转的过程中,使得△POE能否成为等腰三角形.请写出所有满足条件的点F的坐标
如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm、和10的长方体无盖盒子中,则细木棒露在盒外面的最短长度是 cm.