已知椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 A 0 , - 2 , 以四个顶点围成的四边形面积为 4 5 .
(1) 求椭圆 E 的标准方程.
(2) 过点 P 0 , - 3 的直线 l 的斜率为 k , 交椭圆 E 于不同的两点 B , C , 直线 AB , AC 交 y = - 3 于点 M , N , 若 PM + PN ⩽ 15 , 求 k 的取值范围.
在△ABC中,a、b、c分别为角A、B、C的对边,表示该三角形的面积,且(Ⅰ)求角的大小;(Ⅱ)若,求b的值.
如图,函数y=2sin(π+φ),x∈R,(其中0≤φ≤)的图象与y轴交于点(0,1). (Ⅰ)求φ的值;(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求
设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx, sin2x),x∈R.(Ⅰ)若f(x)=1-且x∈[-,],求x;(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值。
为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。
已知向量,,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。(Ⅰ)求角C的大小;(Ⅱ)求的取值范围;