已知正方体 ABCD - A 1 B 1 C 1 D 1 , 点 E 为 A 1 D 1 中点, 直线 B 1 C 1 交平面 CDE 于点 F .
(1) 求证:点 F 为 B 1 C 1 中点.
(2) 若点 M 为棱 A 1 B 1 上一点, 且二面角 M - CF - E 的余弦值为 5 3 , 求 A 1 M A 1 B 1 .
已知数列的首项,是的前项和,且. (1)若记,求数列的通项公式; (2)记,证明:,.
已知数列的首项,且. (1)求数列的通项公式; (2)求数列的前项和.
如图,已知正方体的棱长为. (1)求四面体的左视图的面积; (2)求四面体的体积.
经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为(). (1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少? (2)若要求在该时段内车流量超过千辆/时,则汽车的平均速度应在什么范围内?
在锐角中,、、分别为角、、所对的边,且. (1)求角的大小; (2)若,且的面积为,求的值.