抛物线C的顶点为坐标原点O.焦点在x轴上,直线l: x = 1 交C于P,Q两点,且 OP ⊥ OQ .已知点 M 2 , 0 ,且 ⊙ M 与l相切.
(1)求C, ⊙ M 的方程;
(2)设 A 1 , A 2 , A 3 是C上的三个点,直线 A 1 A 2 , A 1 A 3 均与 ⊙ M 相切.判断直线 A 2 A 3 与 ⊙ M 的位置关系,并说明理由.
已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切. (I)求椭圆的方程; (II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程; (III)设与轴交于点,不同的两点在上,且满足求的取值范围.
(本小题满分12分) 已知数列满足 (1)求; (2)已知存在实数,使为公差为的等差数列,求的值; (3)记,数列的前项和为,求证:.
(本小题满分12分)
20090327
已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K,已知|AK|=|AF|,三角形AFK的面积等于8.
(本小题满分13分)如图,在矩形ABCD中,已知A(2,0)、C(-2,2),点P在BC边上移动,线段OP的垂直平分线交y轴于点E,点M满足 (Ⅰ)求点M的轨迹方程; (Ⅱ)已知点F(0,),过点F的直线l交点M的轨迹于Q、R两点,且求实数的取值范围.
(本小题满分14分)已知等比数列的前项和为 (Ⅰ)求数列的通项公式; (Ⅱ)设数列满足,为数列的前项和,试比较与 的大小,并证明你的结论.