先化简 ( a 2 − 1 a − 3 − a − 1 ) ÷ a + 1 a 2 − 6 a + 9 ,然后从 − 1 ,0,1,3中选一个合适的数作为 a 的值代入求值.
如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 ⊙ O 交 BC 于点 D , DE ⊥ AC 交 BA 的延长线于点 E ,交 AC 于点 F .
(1)求证: DE 是 ⊙ O 的切线;
(2)若 AC = 6 , tan E = 3 4 ,求 AF 的长.
如图,已知直线 y = kx + b ( k ≠ 0 ) 与双曲线 y = 6 x 相交于 A ( m , 3 ) 、 B ( 3 , n ) 两点.
(1)求直线 AB 的解析式;
(2)连结 AO 并延长交双曲线于点 C ,连结 BC 交 x 轴于点 D ,连结 AD ,求 ΔABD 的面积.
我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的 1 2 ,应如何购买才能使总费用最少?并求出最少费用.
目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为: A (实时关注)、 B (关注较多)、 C (关注较少)、 D (不关注)四类,现将调查结果绘制成如图所示的统计图.
请根据图中信息,解答下列问题:
(1)求 C 类职工所对应扇形的圆心角度数,并补全条形统计图;
(2)若 D 类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.
先化简,再求值: ( x 2 + 2 x + 1 x 2 - 1 - 1 x - 1 ) ÷ x 2 x - 1 ,其中 x - 3 = 0 .