计算:
(1) | - 1 2 | - ( - 2 ) 3 + sin 30 ° ;
(2) 4 a - a + 8 2 a .
如图,抛物线与x轴交于A(1,0)、B(-4,0)两点,交y轴与C点.(1)求该抛物线的解析式.(2)在该抛物线位于第二象限的部分上是否存在点D,使得△DBC的面积S最大?若存在,求出点D的坐标;若不存在,请说明理由.(3)设抛物线的顶点为点F,连接线段CF,连接直线BC,请问能否在直线BC上找到一个点M,在抛物线上找到一个点N,使得C、F、M、N四点组成的四边形为平行四边形,若存在,请写出点M和点N的坐标;若不存在,请说明理由.
小明对直角三角形很感兴趣. △ABC中,∠ACB=90°,D是AB上任意一点,连接DC,作DE⊥DC,EA⊥AC,DE与AE交于点E.请你跟着他一起解决下列问题:(1)如图1,若△ABC是等腰直角三角形,则DE,DC有什么数量关系?请给出证明.(2)如果换一个直角三角形,如图2,∠CBA=30°,则DE,DC又有什么数量关系?请给出证明.(3)由(1)、(2)这两种特殊情况,小明提出问题:如果直角三角形ABC中,BC=mAC,那DE, DC有什么数量关系?请给出证明.
如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E,CE=,CD=2.(1)求直径BC的长;(2)求弦AB的长.
如图,在△ABC中,,以顶点C为圆心,BC为半径作圆. 若.(1)求AB长;(2)求⊙C截AB所得弦BD的长.
已知函数与函数的图象大致如图.若试确定自变量的取值范围.