图①、图②、图③均是 4 × 4 的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点 A 、 B 、 C 均为格点.只用无刻度的直尺,分别在给定的网格中找一格点 M ,按下列要求作图:
(1)在图①中,连结 MA 、 MB ,使 MA = MB ;
(2)在图②中,连结 MA 、 MB 、 MC ,使 MA = MB = MC ;
(3)在图③中,连结 MA 、 MC ,使 ∠ AMC = 2 ∠ ABC .
(本题9分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D. (1)求证:AE•BC=BD•AC; (2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.
(本题9分)已知关于x的一元二次方程+6x=4m﹣3有实数根. (1)求m的取值范围; (2)设方程的两实根分别为与,且=·+7,求m的值.
(本题9分)如图,在菱形ABCD中,AB=2,∠BAD =60º,AC交BD于点O,以点D为圆心的⊙D与边AB相切于点E. (1)求AC的长;(2)求证:⊙D与边BC也相切
(本题7分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来. (1)运用列表或画树状图求甲得1分的概率; (2)这个游戏是否公平?请说明理由.
(本题8分)如图,一次函数 y="kx+b" 的图象与反比例函数y=的图象交于 A(﹣2,1),B(1,n)两点. (1)试确定上述反比例函数和一次函数的表达式; (2)连OB,在x轴上取点C,使BC=BO,并求△OBC的面积.