从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度 y (单位: m ) 与它距离喷头的水平距离 x (单位: m ) 之间满足函数关系式 y = - 2 x 2 + 4 x + 1 喷出水珠的最大高度是 m .
若直线y=kx(k>0)与双曲线的图象交于A(x1,y1)、B(x2,y2)两点,则2x1y2+3x2y1= .
已知正比例函数y=kx与反比例函数y=相交于点A(1,b)、点B(c,﹣2),求k+a的值.甲同学说:未知数太多,很难求的;乙同学说:可能不是用待定系数法来求;丙说:如果用数形结合的方法,利用两交点在坐标系中位置的特殊性,可以试试.请结合他们的讨论求出k+a= .
如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1= .
如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为 .
如图所示,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,过A1、A2、A3、A4、A5…分别作x轴的垂线与反比例函数y=的图象交于点P1、P2、P3、P4、P5…,并设△OA1P1、△A1A2P2、△A2A3P3…面积分别为S1、S2、S3…,按此作法进行下去,则Sn的值为 (n为正整数).