汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路 l ,其间设有区间测速,所有车辆限速40千米 / 小时.数学实践活动小组设计了如下活动:在 l 上确定 A , B 两点,并在 AB 路段进行区间测速.在 l 外取一点 P ,作 PC ⊥ l ,垂足为点 C .测得 PC = 30 米, ∠ APC = 71 ° , ∠ BPC = 35 ° .上午9时测得一汽车从点 A 到点 B 用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据: sin 35 ° ≈ 0 . 57 , cos 35 ° ≈ 0 . 82 , tan 35 ° ≈ 0 . 70 , sin 71 ° ≈ 0 . 95 , cos 71 ° ≈ 0 . 33 , tan 71 ° ≈ 2 . 90 )
(本小题满分6分)先化简,再求值:,其中是不等式组的整数解.
如图,在平面直角坐标系中,抛物线与x轴的一个交点为A(2,0),与y轴的交点为C,对称轴是,对称轴与x轴交于点B. (1)求抛物线的函数表达式; (2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标; (3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.
为鼓励大学毕业生自主创业,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:. (1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元? (2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
如图,AB是半圆O的直径,C.D是半圆O上的两点,且OD∥BC,OD与AC交于点E. (1)若∠B=68°,求∠CAD的度数; (2)若AB=8,AC=6,求DE的长.
如图,以点P(﹣2,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB. (1)求B、C两点的坐标; (2)请在图中画出线段MB,MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标.