汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路 l ,其间设有区间测速,所有车辆限速40千米 / 小时.数学实践活动小组设计了如下活动:在 l 上确定 A , B 两点,并在 AB 路段进行区间测速.在 l 外取一点 P ,作 PC ⊥ l ,垂足为点 C .测得 PC = 30 米, ∠ APC = 71 ° , ∠ BPC = 35 ° .上午9时测得一汽车从点 A 到点 B 用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据: sin 35 ° ≈ 0 . 57 , cos 35 ° ≈ 0 . 82 , tan 35 ° ≈ 0 . 70 , sin 71 ° ≈ 0 . 95 , cos 71 ° ≈ 0 . 33 , tan 71 ° ≈ 2 . 90 )
如图,抛物线 C 1 : y = - 3 x 2 + 2 3 x 的顶点为,与轴的正半轴交于点.
(1)将抛物线上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;
(2)将抛物线上的点变为,,变换后得到的抛物线记作,抛物线的顶点为,点在抛物线上,满足,且.
①当时,求的值;
②当时,请直接写出的值,不必说明理由.
若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,中,设,,,各边上的高分别记为,,,各边上的内接正方形的边长分别记为,,
(1)模拟探究:如图,正方形为的边上的内接正方形,求证: 1 a + 1 h a = 1 x a ;
(2)特殊应用:若,,求 1 b + 1 c 的值;
(3)拓展延伸:若为锐角三角形,,请判断与的大小,并说明理由.
如图,反比例函数 y = k x ( x > 0 ) 的图象与直线交于点,,其两边分别与两坐标轴的正半轴交于点,,四边形的面积为6.
(1)求的值;
(2)点在反比例函数 y = k x ( x > 0 ) 的图象上,若点的横坐标为3,,其两边分别与轴的正半轴,直线交于点,,问是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
如图,在中,,对角线,相交于点,以为直径的分别交,于点,,连接并延长交于点.
(1)求证:是的切线;
(2)求证:.
甲车从地驶往地,同时乙车从地驶往地,两车相向而行,匀速行驶,甲车距地的距离与行驶时间之间的函数关系如图所示,乙车的速度是
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为,并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求的值.