如图,一次函数 y = kx + b 的图象与反比例函数 y = m x ( x < 0 ) 的图象相交于点 A ( - 3 , n ) , B ( - 1 , - 3 ) 两点,过点 A 作 AC ⊥ OP 于点 C .
(1)求一次函数和反比例函数的表达式;
(2)求四边形 ABOC 的面积.
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
已知:如图,Rt△ABC中,CD是斜边AB上的高.求证:AC2=AD·AB
阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格) (1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的: 设所求矩形的两边分别是x和y,由题意得方程组:, 消去y化简得:, ∵△=49-48>0,∴=,=. ∴满足要求的矩形B存在. (2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B. (3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?
两个警察抓两个小偷,目击者说:两个小偷分别躲藏在六个房间中的两间,但不知道他们到底躲藏在哪两间。而如果警察冲进了无人的房间,那么小偷就会趁机逃跑。如果两个警察随机地冲进两个房间抓小偷,(1)至少能抓获一个小偷的概率是多少?(2)两个小偷全部抓获的概率是多少?请简单说明理由.
某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同. (1)求每期减少的百分率是多少? (2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?