古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点 G 将一线段 MN 分为两线段 MG , GN ,使得其中较长的一段 MG 是全长 MN 与较短的一段 GN 的比例中项,即满足 MG MN = GN MG = 5 - 1 2 ,后人把 5 - 1 2 这个数称为“黄金分割”数,把点 G 称为线段 MN 的“黄金分割”点.如图,在 ΔABC 中,已知 AB = AC = 3 , BC = 4 ,若 D , E 是边 BC 的两个“黄金分割”点,则 ΔADE 的面积为 ( )
A. 10 - 4 5 B. 3 5 - 5 C. 5 - 2 5 2 D. 20 - 8 5
如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是( )
如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3.则AC的值为( )
河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为( )
如图,无法保证△ADE与△ABC相似的条件是( ).
甲队修路120米与乙队修路100米所用天数相同,已知甲队比乙队每天多修10米,设甲队每天修路x米,依题意得,下列所列方程正确的是: