已知 ΔABC 中, AB = AC , ∠ BAC = 90 ° , D 、 E 分别是 AB 、 AC 的中点, 将 ΔADE 绕点 A 按顺时针方向旋转一个角度 α ( 0 ° < α < 90 ° ) 得到△ A D ' E ' ,连接 BD ' 、 CE ' ,如图 1 .
(1) 求证: BD ' = C E ' ;
(2) 如图 2 ,当 α = 60 ° 时, 设 AB 与 D ' E ' 交于点 F ,求 BF FA 的值 .
解方程:
计算:
(1)计算:(p-2010)0 +(sin60°)-1-︱tan30°-︱+.(2)先化简:;若结果等于,求出相应x的值.
如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.
如图,△ABC内接于⊙O,且∠B = 60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若AF = 4,求图中阴影部分的面积.