如图,直线 y = − 2 x + 4 交 y 轴于点 A ,交抛物线 y = 1 2 x 2 + bx + c 于点 B ( 3 , − 2 ) ,抛物线经过点 C ( − 1 , 0 ) ,交 y 轴于点 D ,点 P 是抛物线上的动点,作 PE ⊥ DB 交 DB 所在直线于点 E .
(1)求抛物线的解析式;
(2)当 ΔPDE 为等腰直角三角形时,求出 PE 的长及 P 点坐标;
(3)在(2)的条件下,连接 PB ,将 ΔPBE 沿直线 AB 翻折,直接写出翻折点后 E 的对称点坐标.
如图,△ABC中,D、E分别在边AB、AC上,且,求证∠AED=∠B.
为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为,矩形区域的面积为. (1)求y与x之间的函数关系式,并注明自变量x的取值范围; (2)x为何值时,y有最大值?最大值是多少?
如图,在等腰三角形中,,是边上一点,以为一边,向上作等腰,使∽,连, 求证:(1)(2)
如图,一次函数与反比例函数的图象交于、两点. (1)求、两点的坐标和反比例函数的解析式; (2)根据图象,直接写出当时的取值范围; (3)求的面积.