如图,在平面直角坐标系中,抛物线 y = 1 2 x 2 + bx + c 与 x 轴交于 A , B 两点,点 B ( 3 , 0 ) ,经过点 A 的直线 AC 与抛物线的另一交点为 C ( 4 , 5 2 ) ,与 y 轴交点为 D ,点 P 是直线 AC 下方的抛物线上的一个动点(不与点 A , C 重合).
(1)求该抛物线的解析式.
(2)过点 P 作 PE ⊥ AC ,垂足为点 E ,作 PF / / y 轴交直线 AC 于点 F ,设点 P 的横坐标为 t ,线段 EF 的长度为 m ,求 m 与 t 的函数关系式.
(3)点 Q 在抛物线的对称轴上运动,当 ΔOPQ 是以 OP 为直角边的等腰直角三角形时,请直接写出符合条件的点 P 的坐标.
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由.
已知二次函数.当c=-3时,求出该二次函数的图象与x轴的交点坐标;若-2<x<1时,该二次函数的图象与x轴有且只有一个交点,求c的取值范围.
如图,港口B在港口A的东北方向,上午9时,一艘轮船从港口A出发,以16海里/时的速度向正东方向航行,同时一艘快艇从港口B出发也向正东方向航行.上午11时轮船到达C处,同时快艇到达D处,测得D处在C处的北偏东60°的方向上,且C、D两地相距80海里,求快艇每小时航行多少海里?(结果精确到0.1海里/时,参考数据:,,)
去年寒假期间,学校团委要求学生参加一项社会调查活动,八年级学生小青想了解她所在的小区500户居民家庭月人均收入情况,从中随机调查了一定数量的居民家庭的月人均收入(元)情况,并绘制成如下的频数分布直方图(每组含左端点,不含右端点)和扇形统计图.请你根据以上不完整的频数分布直方图和扇形统计图提供的信息,解答下列问题:这次共调查了多少户居民家庭的人均收入?扇形统计图中的a=,b= ;.补全频数分布直方图.
如图,AB、BF分别是⊙O的直径和弦,弦CD与AB、BF分别相交于点E、G,过点F的切线HF与DC的延长线相交于点H,且HF=HG. 求证:AB⊥CD; 若sin∠HGF=,BF=3,求⊙O的半径长.