你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程 x 2 + 5 x - 14 = 0 即 x ( x + 5 ) = 14 为例加以说明.数学家赵爽(公元 3 ~ 4 世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是 ( x + x + 5 ) 2 ,其中它又等于四个矩形的面积加上中间小正方形的面积,即 4 × 14 + 5 2 ,据此易得 x = 2 .那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程 x 2 - 4 x - 12 = 0 的正确构图是 .(只填序号)
(成都)有9张卡片,分别写有这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为____.
若矩形ABCD的两邻边长分别为一元二次方程的两个实数根,则矩形ABCD的对角线长为 .
已知关于x的方程的解为2,则代数式的值是 .
(攀枝花)分式方程的根为 .
(巴中)分式方程的解为x= .