如图,四边形 ABC 内接于 ⊙ O , AB = AC , AC ⊥ BD ,垂足为 E ,点 F 在 BD 的延长线上,且 DF = DC ,连接 AF 、 CF .
(1)求证: ∠ BAC = 2 ∠ CAD ;
(2)若 AF = 10 , BC = 4 5 ,求 tan ∠ BAD 的值.
如图,将正方形 中的阴影三角形绕点 顺时针旋转 后,得到的图形为
如图,数轴上两点 , 表示的数互为相反数,则点 表示的数为
6
0
无法确定
如图, BD是正方形 ABCD的对角线, BC=2,边 BC在其所在的直线上平移,将通过平移得到的线段记为 PQ,连接 PA、 QD,并过点 Q作 QO⊥ BD,垂足为 O,连接 OA、 OP.
(1)请直接写出线段 BC在平移过程中,四边形 APQD是什么四边形?
(2)请判断 OA、 OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设 y= S △ OPB, BP= x(0≤ x≤2),求 y与 x之间的函数关系式,并求出 y的最大值.
如图,⊙ O是△ ABC的外接圆, BC是⊙ O的直径,∠ ABC=30°,过点 B作⊙ O的切线 BD,与 CA的延长线交于点 D,与半径 AO的延长线交于点 E,过点 A作⊙ O的切线 AF,与直径 BC的延长线交于点 F.
(1)求证:△ ACF∽△ DAE;
(2)若 S △ AOC = 3 4 ,求 DE的长;
(3)连接 EF,求证: EF是⊙ O的切线.
如图,在直角坐标系中,直线 y= kx+1( k≠0)与双曲线 y = 2 x ( x > 0 ) 相交于点 P(1, m).
(1)求 k的值;
(2)若点 Q与点 P关于直线 y= x成轴对称,则点 Q的坐标是 Q( );
(3)若过 P、 Q二点的抛物线与 y轴的交点为 N 0 , 5 3 ,求该抛物线的函数解析式,并求出抛物线的对称轴方程.