如图1,在平面直角坐标系中,一次函数 y = − 3 4 x + 3 的图象与 x 轴交于点 A ,与 y 轴交于 B 点,抛物线 y = − x 2 + bx + c 经过 A , B 两点,在第一象限的抛物线上取一点 D ,过点 D 作 DC ⊥ x 轴于点 C ,交直线 AB 于点 E .
(1)求抛物线的函数表达式;
(2)是否存在点 D ,使得 ΔBDE 和 ΔACE 相似?若存在,请求出点 D 的坐标,若不存在,请说明理由;
(3)如图2, F 是第一象限内抛物线上的动点(不与点 D 重合),点 G 是线段 AB 上的动点.连接 DF , FG ,当四边形 DEGF 是平行四边形且周长最大时,请直接写出点 G 的坐标.
(11·佛山)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p(元/千克)与销售月份x的关系如图所示:③销售量m(千克)与销售月份x满足m=100x+200;试解决以下问题:(1) 根据图形,求p与x之间的函数关系式;(2) 求该种商品每月的销售利润y(元)与销售月份x的函数关系式,并求出哪个月的销售利润最大?
(11·佛山)现在初中课本里所学习的概率计算问题只有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验;解决概率计算问题,可以直接利用模型,也可以转化后再利用模型;请解决以下问题(1)如图,类似课本的一个寻宝游戏,若宝物随机藏在某一块砖下(图中每一块砖除颜色外完全相同),则宝物藏在阴影砖下的概率是多少?(2)在中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:请你根据表中数据,估计构成钝角三角形的概率是多少?(精确到百分位)
(11·佛山)如图,一张纸上有线段AB;(1)请用尺规作图,作出线段AB的垂直平分线(保留作图痕迹,不写作法和证明);(2)若不用尺规作图,你还有其它作法吗?请说明作法(不作图);
(11·佛山)如图,已知二次函数y=ax2+bx+c的图像经过A(-1,-1)、B(0,2)、C(1,3);(1)求二次函数的解析式;(2)画出二次函数的图像;
(11·佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积;