如图,已知抛物线的对称轴是 y 轴,且点 ( 2 , 2 ) , ( 1 , 5 4 ) 在抛物线上,点 P 是抛物线上不与顶点 N 重合的一动点,过 P 作 PA ⊥ x 轴于 A , PC ⊥ y 轴于 C ,延长 PC 交抛物线于 E ,设 M 是 O 关于抛物线顶点 N 的对称点, D 是 C 点关于 N 的对称点.
(1)求抛物线的解析式及顶点 N 的坐标;
(2)求证:四边形 PMDA 是平行四边形;
(3)求证: ΔDPE ∽ ΔPAM ,并求出当它们的相似比为 3 时的点 P 的坐标.
如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形.(2)当∠A=40°时,求∠DEF的度数.
和是等边三角形,求证:.
如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC。求证:(1)△AEF≌△BCD;(2) EF∥CD.
如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.
如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1 ________ C1 ________.