为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从 A :文学鉴赏, B :科学探究, C :文史天地, D :趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:
(1)本次调查的总人数为 人,扇形统计图中 A 部分的圆心角是 度.
(2)请补全条形统计图.
(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?
如图所示,点E、F、G、H分别为□ABCD的边AB、BC、CD、DA的中点.求证:EF=HG.
先化简,再求值:,其中
计算:
已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD。(1)如图1,当点P在线段OC上时,求证:OP=CD;(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;(3)如图2,抛物线y=-x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形,若存在,请求出t的值;若不存在,请说明理由。
已知:点A、B分别在直角坐标系的x、y轴的正半轴上,O是坐标原点,点C在射线AO上,点D在线段OB上,直线AD与线段BC相交于点P,设=a, =b,=k。(1)如图1,当a=,b=1时,请求出k的值;(2)当a=,b=1时(如图2),请求出k的值;当a=,b=时,k=▲;(3)根据以上探索研究,请你解决以下问题:①请直接写出用含a,b代数式表示k=▲;② 若点A(8,0),点B(0,6),C(-2,0),直线AD为:y=-x+4,则k=▲。