如图,二次函数 y = − x 2 + 3 x + m 的图象与 x 轴的一个交点为 B ( 4 , 0 ) ,另一个交点为 A ,且与 y 轴相交于 C 点.
(1)求 m 的值及 C 点坐标;
(2)在直线 BC 上方的抛物线上是否存在一点 M ,使得它与 B , C 两点构成的三角形面积最大,若存在,求出此时 M 点坐标;若不存在,请简要说明理由;
(3) P 为抛物线上一点,它关于直线 BC 的对称点为 Q :
①当四边形 PBQC 为菱形时,求点 P 的坐标;
②点 P 的横坐标为 t ( 0 < t < 4 ) ,当 t 为何值时,四边形 PBQC 的面积最大,请说明理由.
在数轴上标出下列各数:,并用“<”连接起来
如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2r) (1) 把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是_________; (2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录 如下:+2, -1, -5, +4, +3, -2 ①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远? ②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?
(本题6分)阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用−1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3, ∴的整数部分为2,小数部分为(−2). 请解答:(1)的整数部分是__________,小数部分是__________ (2)如果的小数部分为a,的整数部分为b,求a+b−的值;
(本小题6分)如图所示的3×3的方格中,用画出3个面积9的不同的正方形,而且所画正方形的顶点都在方格的顶点上,并写出你所画的正方形的边长.
画出数轴,在数轴上表示下列各数,并用“<”连接: -, ,0 ,