已知二次函数 y = x 2 + bx + c 的图象与 y 轴交于点 C ( 0 , − 6 ) ,与 x 轴的一个交点坐标是 A ( − 2 , 0 ) .
(1)求二次函数的解析式,并写出顶点 D 的坐标;
(2)将二次函数的图象沿 x 轴向左平移 5 2 个单位长度,当 y < 0 时,求 x 的取值范围.
如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.
如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
已知a2+2ab+b2=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.
解不等式:4(x﹣1)>5x﹣6.
【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.