阅读理解:用“十字相乘法”分解因式 2 x 2 − x − 3 的方法.
(1)二次项系数 2 = 1 × 2 ;
(2)常数项 − 3 = − 1 × 3 = 1 × ( − 3 ) ,验算:“交叉相乘之和”;
1 × 3 + 2 × ( − 1 ) = 1 1 × ( − 1 ) + 2 × 3 = 5 1 × ( − 3 ) + 2 × 1 = − 1 1 × 1 + 2 × ( − 3 ) = − 5
(3)发现第③个“交叉相乘之和”的结果 1 × ( − 3 ) + 2 × 1 = − 1 ,等于一次项系数 − 1 .
即: ( x + 1 ) ( 2 x − 3 ) = 2 x 2 − 3 x + 2 x − 3 = 2 x 2 − x − 3 ,则 2 x 2 − x − 3 = ( x + 1 ) ( 2 x − 3 ) .
像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式: 3 x 2 + 5 x − 12 = .
当a<1时,化简的结果是。
如图,双曲线(x>0)经过点A(1,6)、点B(2,n),点P的坐标为(t,0),且-1≤t<3,则△PAB的最大面积为_______________.
如图,扇形OAB和扇形OCD所在的圆是同心圆,其圆心为O,OA=2,∠COA=15°,∠AOB=60°,则阴影部分的面积为_____________.
下列条件之一能使□ABCD是菱形的有_____________________.(只填序号即可) (1)AC⊥BD;(2)∠BAD=90°;(3)AB=CB;(4)AC=BD.
已知一次函数y=kx+k-3的图象经过点(2,3),则k的值为.