如图,直线 l : y =﹣ x + 1 与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限, ∠ POQ = 135 ° .
(1)求△AOB的周长;
(2)设 AQ = t > 0 ,试用含t的代数式表示点P的坐标;
(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记 tan ∠ AOQ = m ,若过点A的二次函数 y = a x 2 + bx + c 同时满足以下两个条件:
① 6 a + 3 b + 2 c = 0 ;
②当 m ≤ x ≤ m + 2 时,函数y的最大值等于 2 m ,求二次项系数a的值.
如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度
解方程:
先化简,再求值:若A=,B=,其中,,求2A-B的值.
化简:7ab + ( -8ac) - ( -5ab) + 10ac -12ab
计算: