首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 102

在平面直角坐标系 xOy中,抛物线 yax 2+ bx+ cy轴交于点 C,其顶点记为 M,自变量 x=﹣1和 x=5对应的函数值相等.若点 M在直线 ly=﹣12 x+16上,点(3,﹣4)在抛物线上.

(1)求该抛物线的解析式;

(2)设 yax 2+ bx+ c对称轴右侧 x轴上方的图象上任一点为 P,在 x轴上有一点 A(﹣ 7 2 ,0),试比较锐角∠ PCO与∠ ACO的大小(不必证明),并写出相应的 P点横坐标 x的取值范围.

(3)直线 l与抛物线另一交点记为 BQ为线段 BM上一动点(点 Q不与 M重合).设 Q点坐标为( tn),过 QQHx轴于点 H,将以点 QHOC为顶点的四边形的面积 S表示为 t的函数,标出自变量 t的取值范围,并求出 S可能取得的最大值.

登录免费查看答案和解析

在平面直角坐标系xOy中,抛物线y=ax2bxc与y轴交于点