下列说法中正确的有( )
① 36 的算术平方根是6
②关于 x的方程 mx 2+2 x+1=0有实数根,那么 m的取值范围是 m≤1且 m≠0.
③一组数据:1,0,2,1,0,2的方差是 2 3 .
④已知直角三角形的两边长分别为3和4,则第三边的长为5.
⑤在平行四边形、线段、角、等边三角形四个图形中,既是轴对称图形又是中心对称图的只有一个.
1个
2个
3个
4个
若m·23=26,则m等于()
如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。 (1)求抛物线的解析式;(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标; (3)点在(1)中抛物线上, 点为抛物线上一动点,在轴上是 否存在点,使以为顶 点的四边形是平行四边形,如果存在, 求出所有满足条件的点的坐标, 若不存在,请说明理由。
如图,已知Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连结BD。 (1)若AD=3,BD=4,求边BC的长; (2)取BC的中点E,连结DE,求证:ED与⊙O相切。
如图,为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘上的指针所指字母都相同时,他就获得一次指定一位到会者为大家表演节目的机会。 (1)利用树形图或列表的方法表示出游戏可能出现的所有结果。 (2)若小明参加一次游戏,则他能获得这种指定机会的概率是多少?
.先阅读下面的例题,再按要求解答。 例:解一元二次不等式x2-9>0 解:∵x2-9=(x+3)(x-3) ∴(x+3)(x-3)>0 由有理数的乘法法则“两数相乘,同号得正”得 (1) (2) 解不等式组(1),得x>3 解不等式组(2),得x<-3 ∴(x+3)(x-3)>0的解集为x>3或x<-3 即一元二次不等式x2-9>0的解集为x>3或x<-3 问题:求分式不等式的解集