某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元件的商品售后,经过统计得到此商品单价在第天为正整数)销售的相关信息,如表所示:
销售量(件
销售单价(元件)
当时, m = 20 + 1 2 x
当时, m = 10 + 420 x
(1)请计算第几天该商品单价为25元件?
(2)求网店销售该商品30天里所获利润(元关于(天的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?
如图,在矩形 ABCD 中, AB = 4 , BC = 3 , AF 平分 ∠ DAC ,分别交 DC , BC 的延长线于点 E , F ;连接 DF ,过点 A 作 AH / / DF ,分别交 BD , BF 于点 G , H .
(1)求 DE 的长;
(2)求证: ∠ 1 = ∠ DFC .
我市某超市销售一种文具,进价为5元 / 件.售价为6元 / 件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为 x 元 / 件 ( x ⩾ 6 ,且 x 是按0.5元的倍数上涨),当天销售利润为 y 元.
(1)求 y 与 x 的函数关系式(不要求写出自变量的取值范围);
(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;
(3)若每件文具的利润不超过 80 % ,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.
如图,在 Rt Δ ABC 中, ∠ C = 90 ° , D 为 BC 上一点, AB = 5 , BD = 1 , tan B = 3 4 .
(1)求 AD 的长;
(2)求 sin α 的值.
一个不透明的口袋中有三个完全相同的小球,球上分别标有数字 − 1 ,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点 M 的横坐标 x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点 M 的纵坐标 y .
(1)用列表法或树状图法,列出点 M ( x , y ) 的所有可能结果;
(2)求点 M ( x , y ) 在双曲线 y = − 2 x 上的概率.
如图,一次函数 y = k 1 x + 5 ( k 1 < 0 ) 的图象与坐标轴交于 A , B 两点,与反比例函数 y = k 2 x ( k 2 > 0 ) 的图象交于 M , N 两点,过点 M 作 MC ⊥ y 轴于点 C ,已知 CM = 1 .
(1)求 k 2 − k 1 的值;
(2)若 AM AN = 1 4 ,求反比例函数的解析式;
(3)在(2)的条件下,设点 P 是 x 轴(除原点 O 外)上一点,将线段 CP 绕点 P 按顺时针或逆时针旋转 90 ° 得到线段 PQ ,当点 P 滑动时,点 Q 能否在反比例函数的图象上?如果能,求出所有的点 Q 的坐标;如果不能,请说明理由.