A , B 两地间有一段笔直的高速铁路,长度为 100 km .某时发生的地震对地面上以点 C 为圆心, 30 km 为半径的圆形区域内的建筑物有影响.分别从 A , B 两地处测得点 C 的方位角如图所示, tan α = 1 . 776 , tan β = 1 . 224 .高速铁路是否会受到地震的影响?请通过计算说明理由.
(1)计算:.(2)解方程组
如图,圆B切y轴于原点O,过定点A(-,0)作圆B的切线交圆于点P,已知tan∠PAB=,抛物线C经过A、P两点。(1)求圆B的半径.(2)若抛物线C经过点B,求其解析式.(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.
如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平。(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?(3)求使用回收净化设备后两年的利润总和。
如图,ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1) 求证:DF="FE;" (2) 若AC=2CF,∠ADC=60 o, AC⊥DC,求BE的长;(3) 在(2)的条件下,求四边形ABED的面积.