在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.
(1)求a、b满足的关系式及c的值.
(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.
(3)如图,当a=-1时,在抛物线上是否存在点P,使ΔPAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.
如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:(1)AC=AD; (2)CF=DF.
如图,直线CD与直线AB相交于点C,根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰)(1)过点P作PQ∥AB,交CD于点Q;过点P作PR⊥CD,垂足为R;(2)若∠DCB=120°,则∠QPR是多少度?并说明理由.
先化简,再求值:, 其中,.
如图,C、F在BE上,∠A=∠D,AB∥DE,BF=EC.求证:AB=DE.
如图,∠ABC=∠BCD,∠1=∠2,请问图中有几对平行线?并说明理由.