如图,在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c的图象经过点A(-2,0),C(0,-6),其对称轴为直线x=2.
(1)求该二次函数的解析式;
(2)若直线y=-13x+m将ΔAOC的面积分成相等的两部分,求m的值;
(3)点B是该二次函数图象与x轴的另一个交点,点D是直线x=2上位于x轴下方的动点,点E是第四象限内该二次函数图象上的动点,且位于直线x=2右侧.若以点E为直角顶点的ΔBED与ΔAOC相似,求点E的坐标.
如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数在第一象限的图象交于点C(1,6)、点D(3,n).过点C作CE⊥y轴于E,过点D作DF⊥x轴于F. (1)求m,n的值; (2)求直线AB的函数解析式; (3)求:△OCD的面积.
某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天? (2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
已知y1是正比例函数,y2是反比例函数,并且当自变量取1时,y1=y2;当自变量取2时,y1﹣y2=9,求y1和y2的解析式.
如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
已知:如图,△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE; (2)求证:AD和CE垂直.